Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A search for resonances in top quark pair ( ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at , corresponding to 138 fb−1. The analysis explores the invariant mass of the system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for toponium, the cross section of the excess above the pQCD prediction is measured to be .more » « less
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Arratia, M; Milton, R; Mikuni, V; Nachman, B; Pan, J; Torales_Acosta, F; Wamorkar, T (Ed.)Free, publicly-accessible full text available March 25, 2026
-
<h1 id="summary">Summary</h1> <p>Title: Data Release for A search for extremely-high-energy neutrinos and first constraints on the ultra-high-energy cosmic-ray proton fraction with IceCube</p> <p>The IceCube observatory analyzed 12.6 years of data in search of extremely-high-energy (EHE) neutrinos above 5 PeV. The resultant limit of the search (Fig 1), and the effective area of the event selection (Fig 7), are provided in this data release.</p> <h1 id="contents">Contents</h1> <ul> <li><p>README file: this file</p> </li> <li><p><code>differential_limit_and_sensitivity.csv</code>: a comma separated value file, giving the observed experimental differential limit, and sensitivity, of the search as a function of neutrino energy. This is the content of Fig 1 in the paper. The first column is the neutrino energy in GeV. The second column is the limit in units of GeV/cm2/s/sr. The third column is the sensitivity in units of GeV/cm2/s/sr.</p> </li> <li><p><code>effective_area.csv</code>: a comma separated value file, giving the effective area of the search as a function of energy. This is the content of Fig 7 in the paper. The first column is the neutrino energy in GeV. The second column is the total effective area of the search, summed across neutrino flavors, and averaged across neutrinos and antineutrinos, in meters-squared. The third column is the effective area of the search for the average of electron neutrino and electron antineutrinos in units of meters-squared. The fourth column is the same as the third, but for muon-flavor neutrinos. The fifth column is the same as the third and fourth, but for tau-flavor neutrinos.</p> </li> <li><p><code>demo.py</code>: a short python script to demonstrate how to read the files. Run like <code>python demo.py</code>. A standard base python installation is sufficient, as the only dependencies are numpy and matplotlib.</p> </li> </ul> <h1 id="contacts">Contacts</h1> <p>For any questions about this data release, please write to analysis@icecube.wisc.edu</p>more » « less
-
Various measurements of muons in air showers using ground-based particle detector arrays have indicated a discrepancy between observed data and predictions from simulations. The IceCube Neutrino Observatory can offer unique insights into this issue. Its surface array, IceTop, measures the muon density at large lateral distances, while the deep in-ice detector provides information on high-energy muons. Recent analyses have determined the surface muon density and the high-energy (Eμ≳ 500 GeV) muon multiplicity in near-vertical air showers for primary energies ranging from 2.5 PeV to 100 PeV. In this contribution, we present the results and discuss their consistency with predictions from current hadronic interaction models.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Abstract A search for light long-lived particles (LLPs) decaying to displaced jets is presented, using a data sample of proton–proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb−1, collected with the CMS detector at the CERN LHC in 2022. Novel trigger, reconstruction, and machine-learning techniques were developed for and employed in this search. After all selections, the observations are consistent with the background predictions. Limits are presented on the branching fraction of the Higgs boson to LLPs that subsequently decay to quark pairs or tau lepton pairs. An improvement by up to a factor of 10 is achieved over previous limits for models with LLP masses smaller than 60 GeV and proper decay lengths smaller than 1 m. The first constraints are placed on the fraternal twin Higgs (FTH) and folded supersymmetry (FSUSY) models, where the lower bounds on the top quark partner mass reach up to 350 GeV for the FTH model and 250 GeV for the FSUSY model.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Free, publicly-accessible full text available November 7, 2025
An official website of the United States government

Full Text Available